Matched Content

Sunday, December 12, 2021

Hubungan: Percepatan, Kecepatan, Gaya, Daya, Energi, Massa

Artikel ini membahas rumus dan perhitungan daya pada kendaraan dengan menggunakan data: massa, kecepatan dan waktu tempuh.



Diketahui sebuah mobil Toyota Corolla dengan berat 3,103 pound (m). Dari posisi berhenti (Vo), lalu berjalan mencapai kecepatan 60 mil/jam (Vt) dalam 8 detik (t).

Massa mobil, m = 3,103/2.205 =  1,407.26 kgf

Kecepatan akhir, Vt = 60×1.61= 96.6 km/jam

Maka akselerasi atau percepatannya adalah:
Kecepatan awal, Vo = 0 m/s
Kecepatan akhir, Vt = 96.6 km/jam = 96.6×1,000/3,600 =  26.83 m/s
Akselerasi, a = (Vt - Vo)/t = (26.83-0) / 8= 3.35 m/s2



Energi kinetik atau usaha yang dilakukan:
E = (1/2.m.Vt.Vt) - (1/2.m.Vo.Vo) = (1/2×1407.26×26.83×26.83) - 0 =   506,507.28 Joule

Daya dapat dihitung dengan energi kinetik, yaitu sama dengan energi dibagi waktu:
P = E/t =  506,507.28 / 8 =  63313.41 watt = 63.31 kw

Dalam satuan daya kuda (horse power) = 63313.41 / 745.7 =  84.90 hp



Daya juga dapat dihitung dengan gaya yang menggerakkan kendaraan. Gaya ini diibaratkan sebagai seutas tali yang menarik kendaraan. Pada gambar di atas diibaratkan sebagai panah merah. Jika pada tali dipasang alat ukur, maka gaya yang menarik mobil bisa diketahui. Gaya ini juga dapat diketahui dengan perhitungan berikut.

Gaya yang menggerakkan mobil adalah massa dikali percepatan:
F = m.a = 1,407.26×3.35 =  4714.32 N

Kecepatan rata-rata adalah:
V = (Vt-Vo) / 2 = (26.83-0) / 2 =  13.42  m/s

Daya berdasarkan gaya dikali kecepatan rata-rata adalah:
P = F.V = 4,720.17×13.42 =   63,344.68 watt = 63.34 kw


Dalam perhitungan ini akselerasi dianggap konstan atau rata-rata. Pada kondisi aktual, akselerasi dapat berubah sesuai gigi transmisi yang digunakan. Karena perbedaan torsi yang lebih besar pada gigi rendah daripada gigi tinggi. Akselerasi pada gigi 1 akan lebih cepat dari akselerasi pada gigi 2. Demikian seterusnya akselerasi melambat pada gigi 3 dan gigi yang lebih tinggi lagi.

Pada kondisi aktual untuk akselerasi yang sama dengan hasil perhitungan, dibutuhkan daya yang lebih besar dari perhitungan ini. Bisa mencapai 2-3 kali lebih besar. Karena adanya faktor effisiensi dan friksi seperti: gesekan dengan jalan, effisiensi transmisi, engine response/throttle response, gas spontan, gesekan udara (aerodinamis), dan lain-lain.

Pada perhitungan, biasanya terjadi kesalahan saat menghitung gaya (F). Gaya ini bekerja menggerakkan kendaraan. Sehingga nilainya adalah massa dikali akselerasi kendaraan, pada gambar di atas terlihat sebagai panah berwarna merah. Bukan gaya berat atau massa yang dikali dengan gravitasi, yang pada gambar di atas terlihat sebagai panah berwarna biru.


CONTOH LAIN
Diketahui sepeda motor Honda CBR1000RR dengan berat 210 kgf dengan pengendara seberat 80 kgf. Dari start mencapai kecepatan 60 mil/jam dengan waktu 2.7 detik.

Massa total = sepeda motor + pengendara = m = 210+80 =  290 kgf

Kecepatan akhir, Vt = 60×1.61= 96.6 km/jam

Maka akselerasi atau percepatannya adalah:
Kecepatan awal, Vo = 0 m/s
Kecepatan akhir, Vt = 96.6 km/jam = 96.6×1,000/3,600 =  26.83 m/s
Akselerasi, a = (Vt - Vo)/t = (26.83-0) / 2.7 = 9.94 m/s2



Energi kinetik atau usaha yang dilakukan:
E = (1/2.m.Vt.Vt) - (1/2.m.Vo.Vo) = (1/2×290×26.83×26.83) - 0 = 104,378.09  Joule

Daya dapat dihitung dengan energi kinetik, yaitu sama dengan energi dibagi waktu:
P = E/t =   104,378.09 / 2.7 =   38,658.55 watt = 38.66 kw

Dalam satuan daya kuda (horse power) =  38,658.55 / 745.7 =  51.84 hp



Daya juga dapat dihitung dengan gaya yang menggerakkan kendaraan. Gaya ini diibaratkan sebagai seutas tali yang menarik kendaraan. Pada gambar di atas diibaratkan sebagai panah merah. Jika pada tali dipasang alat ukur, maka gaya yang menarik motor bisa diketahui. Gaya ini juga dapat diketahui dengan perhitungan berikut.

Gaya yang menggerakkan motor adalah massa dikali percepatan:
F = m.a = 290×9.94 = 2,882.60 N

Kecepatan rata-rata adalah:
V = (Vt-Vo) / 2 = (26.83-0) / 2 = 13.42  m/s

Daya berdasarkan gaya dikali kecepatan rata-rata adalah:
P = F.V = 2,882.60×13.42 = 38,684.49 watt = 38.68 kw



Friday, November 12, 2021

Close Up Video Of Hibiscus Rosa-sinensis L




Hibiscus rosa-sinensis is also known as Hawaiian hibiscus, China rose, rose mallow and shoeblackplant

It is a genus of flowering plants in the mallow family, Malvaceae. This genus consists of several hundred species native to warm, subtropical and tropical climates around the world.

The YouTube video below shows Hibiscus rosa-sinensis L petal, pistil and stamen. And also the stigma is visible in the foreground. The video is recorded with a macro technique (close-up) or at a very close distance so that the details and positions of each flower component can be seen.

Music: New Land by ALBIS

 


In Jakarta, in March, hibiscus flowers bloom from around 4 to 6 am.  And it will bud again around 16 o'clock, until 18 o'clock the petals close completely. After a few hours that closed bud will be fallen.

Hibiscus flowers do not bear fruit, because the pistil is too far from the anther, so that the pollen does not reach the anther, pollination does not occur.

Hibiscus tea has been used to lower body temperature, treat heart disease, relieve sore throat, high blood pressure and high cholesterol.

Hibiscus flowers do not bear fruit, because the pistil is too far from the anther, so that the pollen does not reach the anther, pollination does not occur.

Hibiscus tea has been used to lower body temperature, treat heart disease, relieve sore throat, high blood pressure and high cholesterol.

Tuesday, October 12, 2021

Indahnya Kembang Sepatu Dari Dekat, Hibiscus rosa-sinensis L

 

Kembang sepatu atau bunga raya atau mawar cina, adalah genus tanaman berbunga di keluarga mallow, Malvaceae. Genus ini terdiri dari beberapa ratus spesies yang berasal dari iklim hangat, subtropis, dan tropis di seluruh dunia.

Video YouTube di bawah memperlihatkan kelopak kembang sepatu Hibiscus rosa-sinensis L, putik dan benang sari. Dan juga stigma terlihat di latar depan. Video direkam dengan teknik makro (close-up) atau dengan jarak sangat dekat agar terlihat detail dan posisi setiap komponen-komponen bunga. 

Musik: New Land oleh ALBIS

 


Di Jakarta, pada bulan Maret, kembang sepatu mekar mulai sekitar jam 4 sampai 6 pagi. Dan akan kuncup lagi sekitar jam 16, sampai jam 18  kelopaknya menutup habis. Setelah beberapa jam bunga yang menguncup itu akan gugur.

Kembang sepatu tidak berbuah, karena kepala putiknya terlalu jauh dari kepala sari, sehingga serbuk sari tidak mencapai kepala sari maka penyerbukan tidak terjadi.

Teh kembang sepatu telah digunakan untuk menurunkan suhu tubuh, mengobati penyakit jantung, meredakan sakit tenggorokan, tekanan darah tinggi dan kolesterol tinggi.




Sunday, September 12, 2021

Home Electrical Wiring Color Code Standards


The standard color of the electrical cable in the single phase home electric grid, where there are 3 (three) wires with different colors, namely blue, yellow, black. This cable colour code (CCC) for fixed electrical installations are applicable in some countries such as: Indonesia, Singapore, Hong Kong,, Russia, etc.. For other regions such as US and Europe, please read below explanation.


The basic principle of the circuit can be described as the schematic above.

The blue wire is used for a neutral electric charge or neutral conductor. Sometimes it is also called the negative wire.

Yellow or green wire, or yellow-green striped, for ground or earth, or protective conductor. This wire is sometimes has no insulation or bare wire, directly wrapped with an outer insulator of the cable, which is usually white.

Black or dark brown wire, as active wire that are electrically charged, are also referred to as: phase, live fire, hot, positive.

Actually the term positive wire and negative wire are not quite right. Because the grid has alternating current (a/c). So the black and blue wires will alternate as positive and as negative.


The hot wire must pass through a fuse or MCB (Miniature Circuit Breaker). So that the current can be cut off in case of damage or short circuit, or when repairing the electric grid. The photo above shows a Philips MCB.

The blue wire is neutral, it is connected to earth or ground in the distribution transformer. Or in the generator set, if the electric grid does not pass through the transformer. That is why this wire has no voltage, when touched by fingers or hands. If it is touched by an electric test pen, the neutral wire also does not turn on the test pen light. Actually there is still voltage in the neutral wire, but the voltage is very weak.

The ground wire (green yellow) is connected to ground or earth. The house must have grounding system for this wire to work. The ground wire is connected to a metal body, chassis or metal frame of electrical devices, such as: refrigerator, air conditioner (a/c), washing machine, dishwasher, desktop computer, tv (television), water heater, room heater, clothes iron, audio device (sound system), and others. So that if there is a leakage of electric current, it can be directly discharged to the ground. Thus preventing electrocution, if someone touches the body of an electrical device. On audio device, grounding can improve sound quality to be clearer, because it removes unwanted signals (noise).

Ungrounded soldering can damage sensitive components such as ICs, transistors, MOSFETs, etc.. But many soldering irons are not earthed. Because of the consideration that the price is cheaper, and the cable is lighter so that the solder is easy to move.

If it is grounded, some experts think it's best to ground the soldering rod through a resistor with value about 100 kilo ohms to 1 mega ohms. So if the soldering rod touches the live voltage circuit, then the resistor prevents the electric current from flowing to the ground through the solder rod. This can interfere a working circuit, or even damage sensitive circuit.

In most houses, the power grid is permanently grounded via a metal rod embedded into the ground. The metal can be: stainless steel pipe, copper, galvanized pipe, aluminum, which extend from inside the house, to moist soil or water in the ground.

The depth of the grounding conductor depends on the ground conditions. Conductor can be planted shallowly if the soil condition is always moist throughout the year. Generally, a depth of 4 to 8 feet, or about 1 to 3 meters is quite safe.

A good grounding has resistance below 5 ohms, by measuring it with an earth resistance tester.

If there is a lightning rod installed in a house or building, the grounding will conduct a lightning electric current into the ground. The grounding system for lightning must be separated from the grounding of the power grid. In order to prevent lightning electric current to enter to the power grid, and damaging electrical devices and electronic equipments.

Clean water network pipes in urban areas can be used as grounding. Especially if the pipe is always full of water. But disturbances in the surrounding environment can produce electric current flow back to sensitive equipment in the house. So that it interferes and even damages sensitive electronic device. In some areas, grounding via the clean water network is prohibited, one of the reasons is because electricity can cause electrolysis and damage water quality.

Grounding can also be connected to the home water pump metal body, although the pump suction pipe is made of PVC (Polyvinyl chloride) plastic. As long as the suction pipe and water pump are fully filled with water, earthing will be good. But if the water is reduced, then the grounding is not good. When the water is reduced, chances are the water pump will work hard and then short circuit. So that the electric current leaks, and damages other equipment that is grounded via the water pump.

So grounding via clean water channels is only suitable as temporary grounding. For the long term must use separate and permanent earthing.

For United States (US) a/c power circuit wiring color codes
Protective ground: bare, green, or green-yellow
Neutral : white or grey
Line, single phase: black

IEC (International Electrotechnical Commission) AC power circuit wiring color codes, applicable for most of Europe:
Protective earth: green-yellow
Neutral : blue
Line, single phase: brown

More detail about wiring rules can be read on Wikipedia Electrical wiring.


Thursday, August 12, 2021

Standar Kode Warna Kabel Listrik PLN

 



Standar warna kabel listrik pada jaringan listrik rumah atau jaringan 1 (satu) fase (single phase), dimana terdapat 3 (tiga) kabel dengan warna yang berbeda, yaitu biru, hitam, kuning.

 

Prinsip rangkaian sirkuitnya dapat digambarkan sebagaimana skema di atas.

Kabel warna biru (blue) digunakan untuk muatan listrik netral. Kadang disebut juga kabel negatif.

Kabel warna kuning (yellow) atau hijau, atau belang / loreng kuning-hijau, untuk arde atau pentanahan (ground). Kabel ini kadang tidak diberi isolasi, langsung dibungkus dengan isolator luar kabel, yang biasanya berwarna putih.

Kabel warna hitam (black) atau coklat tua, sebagai kabel aktif yang bermuatan listrik, juga disebut sebagai kabel: fasa (phase), api, strom, positif.

Sebenarnya istilah kabel positif dan kabel negatif kurang tepat. Karena arusnya adalah bolak-balik (alternating current). Sehingga kabel hitam dan biru akan bergantian sebagai positif dan sebagai negatif.




Kabel tegangan harus melewati sekring atau MCB (Miniature Circuit Breaker, pemutus sirkuit mini). Agar arus dapat diputus jika terjadi kerusakan atau korslet, ataupun saat perbaikan jaringan listrik. Foto di atas memperlihatkan MCB Philips.

Kabel netral warna biru, terhubung dengan bumi atau tanah (ground) di trafo (transformer) distribusi, atau di generator set (genset) jika jaringan listrik tidak lewat trafo. Itulah sebabnya kabel ini tidak terasa bertegangan saat tersentuh jari atau tangan. Jika disentuh test pen, kabel netral juga tidak menyalakan lampu test pen. Sebenarnya masih ada tegangan di kabel netral, tapi sangat lemah.

Kabel ground (hijau kuning) terhubung dengan tanah atau pembumian. Harus dibuat pembumian pada setiap rumah agar kabel ini berfungsi. Kabel ground disambung ke bodi metal, sasis atau rangka metal, dari perangkat listrik, seperti: kulkas / lemari pendingin, penyejuk ruangan (air conditioner, ac), mesin cuci pakaian (washing machine), mesin cuci piring dan alat dapur (dishwasher, dish washing machine), komputer meja (desktop computer), tv (televisi), pemanas air (water heater), pemanas ruangan, setrika, perangkat audio (sound system), dan lain-lain. Sehingga bila terjadi kebocoran arus listrik, dapat langsung dibuang ke tanah. Dengan demikian mencegah kesetrum, jika badan orang menyentuh bodi perangkat listrik. Pada perangkat audio, pemasangan ground bisa memperbaiki kualitas suara menjadi lebih jernih, karena membuang sinyal yang mengganggu (noise).

Solder yang tidak dibumikan bisa merusak komponen sensitif seperti IC, transistor, MOSFET,.dan lain-lain. Tapi banyak produk solder tidak dibumikan. Karena pertimbangan agar harga lebih murah, dan agar kabel lebih ringan sehingga solder gampang digerakkan. 

Jika dibumikan, beberapa ahli berpendapat sebaiknya pembumian batang solder harus melalui resistor bernilai 100 kilo ohm sampai 1 mega ohm. Sehingga jika batang solder menyentuh rangkaian bertegangan listrik, maka resistor tersebut mencegah arus listrik dari rangkaian mengalir ke tanah melalui batang solder. Hal ini dapat mengganggu bahkan merusak rangkaian yang sensitif.

Di sebagian besar rumah, jaringan listrik ditanahkan secara permanen ke batang logam yang ditanam ke tanah. Bisa juga dengan pipa logam tahan karat seperti tembaga, pipa galvanis, stainless steel, alumunium, yang memanjang dari dalam rumah, menuju tanah lembab atau air di dalam tanah.

Kedalaman konduktor pembumian bergantung pada kondisi tanah. Konduktor bisa ditanam dangkal jika kondisi tanah selalu lembab sepanjang tahun. Umumnya kedalaman 4 sampai 8 feet, atau sekitar 1 sampai 3 meter sudah cukup aman.

Pembumian yang baik adalah jika resistansinya di bawah 5 ohm. Dengan cara diukur dengan alat earth resistance tester.

Jika pada rumah atau bangunan terdapat instalasi penangkal petir, pembumian akan menghantar arus listrik petir ke dalam tanah. Sistem pembumian untuk petir harus dipisah dari pembumian kabel listrik. Guna mencegah arus listrik petir masuk ke dalam jaringan listrik, dan merusak perangkat listrik dan peralatan elektronik.

Pipa jaringan air bersih di perkotaaan, seperti Perusahaan Air Minum (PAM) atau Perusahaan Daerah Air Minum (PDAM), dapat dijadikan pembumian. Terutama jika pipa tersebut selalu penuh terisi air. Tapi gangguan di lingkungan sekitar dapat mengalirkan arus listrik ke peralatan sensitif di dalam rumah sehingga mengganggu bahkan merusak. Di beberapa daerah, pembumian via jaringan air bersih dilarang, antara lain karena listrik dapat menyebabkan elektrolisa dan merusak kualitas air.

Pembumian juga bisa disambung ke pompa air rumah, pada bagian bodi metalnya, walaupun pipa isap pompa terbuat dari plastik PVC (Polyvinyl chloride / Polivinil klorida). Selama pipa isap dan pompa air tersebut terisi penuh dengan air, maka pembumian akan bagus. Tapi jika air berkurang, maka pembumian jadi tidak bagus. Saat air berkurang, kemungkinan pompa air akan bekerja keras and kemudian korslet. Sehingga arus listrik bocor, dan merusak alat lain yang dibumikan via pompa air.

Jadi pembumian via saluran air bersih hanya cocok sebagai pembumian sementara. Untuk jangka panjang harus memakai pembumian tersendiri dan permanen.


Monday, July 12, 2021

Illuminated Rocker Switch 4 Pins Circuits

This switch with an indicator light is very popular and inexpensive. There are 6 (six) circuits are discussed on this article, with videos for each circuit. These circuits are easy enough to do in your spare time, on Sundays or holidays. With application example to control a water pump that is outside the house, to make it easy to know if the pump is working. This switch is commonly used for: extension cable, power supply, battery charger, StaVol (Stabilizer Voltage) or Automatic Voltage Regulator (AVR), vacuum cleaner, electrical panel, lamp that is far from the switch or garden light, high pressure pump, boat and ship electric, Air Conditioner (A/C), and so on.

The switch discussed is the KCD4 type, with indicator light only lights up at a high voltage of around 90-250 volts AC or DC. The indicator light is a mini neon (NE-2) which can work with direct current and alternating current, if the voltage is suitable. But the switch can work at low voltage. The photo above shows the switch in the On position or connecting. Written on the red button: 1 is the On position, and 0 is the disconnect or Off position.

Current capacity is 15 Amperes at 250 VAC, and 20 Amperes at 125 VAC.


ATTENTION:

The following circuits are connected to the 100-220 VAC electricity network. Always use well-insulated tools. Do not touch the circuit when it is connected to the power grid. Make sure the fuse or MCB (Miniature Circuit Breaker) is disconnected, when connecting the circuit to the electric grid. Always make sure with the Test Pen there is no voltage on the grid, before connecting the circuit to the grid.

If only 1 (one) grid wire is connected directly to the switch. Then the wire should be the voltage wire (live wire, hot wire), not the neutral wire from the electric grid. To ensure that there is no current to the load when the switch is disconnected (Off).

This switch has 4 pins, which are marked 1 and 2, as in the photo above. But usually the schematic is not depicted on the switch body. When viewed from below it will look like the following image:

Number 1 mark is for the two pins near the edge of the switch.

Number 2 mark is for the two pins in the center of the switch.

There is also a number 3, but no pin. There are also switches with pins marked 2b, 2 and 2a; but it has the same working principle.

The schematic of the switch is as follows:

The indicator light is a mini neon or fluorescent lamp (N). On the schematic it looks like the capacitor symbol, but it has a dot. Actually this lamp requires a resistor of about 150 kilo ohms, which is connected in series as a current limiter. But the resistor is not depicted in the schematic for simplicity. It can be seen that the mini fluorescent lamp is always connected to pins number 2.


CIRCUIT 1

This the most common circuit for KCD4 switch.

Pins number 1 are connected to the power grid (IN), depicted in red. Pin number 2 (OUT) is connected to a bulb as load (L), shown in blue.

As the pin image above. In order for the indicator to light up when the switch is connecting (On), both pins 1 must be connected to a current source or electric grid. Although pins number 2 is not connected, the indicator light can be lit if the switch is connecting. Because the indicator light is supplied from pins number 1.

The number 2 pins are connected to the load or device being controlled. In the drawing above the load is described as a lamp (L).

The following YouTube video shows how to attach KCD4 switch, circuit 1st.


CIRCUIT 2

If the space is narrow, or the distance is long, then only 3 (three) wires can be connected to the switch. The following circuit pin numbers are lettered to make it easier to understand, even though the actual switch has no letter written.

 

The schematic above shows pins 1a and 1b, all are connected to the power grid. While only one of pins number 2 is connected to the load (L), namely pin 2a. The other wire of the load is connected directly to the grid wire that goes to pin number 1b.

The grid wire connected to pin 1a should be the live wire.

Then pins connection will look like the picture above. It is clear that only three wires are connected directly to the switch.

The following YouTube video shows the 2nd circuit of KCD4 switch.


CIRCUIT 3

This switch can also be installed in different ways, as shown in the following schematic, so that different effects are obtained.

Diagram of pin connections are as follows.

If the connection is reversed: both number 2 pins are connected to the grid (input). Then the indicator light will always be on, when the switch is connecting, or when the switch is disconnecting. Because the indicator light is connected directly to pins number 2, without going through switches. In this configuration both number 1 pins are connected to the controlled device (output).

This circuit is suitable if the switch location is always dark. As it is always illuminated, it's easy to find the switch.

The following YouTube video shows the 3rd circuit of this 4 prongs switch.



CIRCUIT 4

This switch can also be assembled so that the indicator lights up when not connected (Off). And when the switch is connected (On), the indicator will turn off. Usually used for room light control. As in the following schematic.


When the switch is not connected (Off), the indicator lights up. Because pin number 2a is directly connected to the grid. And pin 2b is connected to the grid through the load (L). The load can not work or turn on, because the current through it is too small.

If the load is damaged or broken, the indicator will be off. This is one of this circuit functions, broken load can be immediately known. But if the load is shorted (short circuit), the indicator stays on.

If the switch is connected, then pin 1a is connected to 2a. So that the indicator light turns off, because it has no current passed. The goal is to make the switch easy to find when the room is dark, because the indicator lights up when the room lights are off.

The grid wire which is connected to pin 2a should be the hot wire. Pins connections are as follows.


 The following YouTube video shows the 4th circuit of this 4 pins switch.


CIRCUIT 5

The fifth circuit has a mini fluorescent lamp added and connected in parallel with the load.

The circuit above shows a mini fluorescent lamp (N) diserie with a resistor (R) usually 150 kilo ohms. The neon and the resistor are connected in parallel with the load (L). Neon serves as an additional indicator or a second indicator.

The following effects will occur:

If the switch is disconnected (Off) and the load is good, then: the switch indicator is on, the second indicator is off.

If the switch is disconnected (Off) and the load is broken, then: the switch indicator is on, the second indicator is on.

If the switch is connected (On) and the load is good, then: the switch indicator is off, the second indicator is on.

If the switch is connected (On) and the load is broken, then: the switch indicator is off, the second indicator is on.

So this circuit can detect if the load is broken or damaged, even though the switch has not been connected. But can't detect if the load is shorted.

The grid wire connected to pin 2a should be the voltage wire. The connection of the pins are as follows:


The following YouTube video shows the fifth circuit of this 4 prongs switch.


CIRCUIT 6
The sixth circuit is similar to the second circuit. But it's simpler, because the long connections are only 2 wires.
  

The voltage wire from the power grid (hot wire) must be connected to the input of the switch. In the schematic is depicted as 1a. The indicator light is connected to earth, it can use a short wire from the switch output, described as 2b. The other output of the switch (2a) is connected to the load lamp, then the load is connected to the neutral wire of the power grid.

Earthing must be well insulated. In order to prevent electrocution in case of leakage from the voltage wire. Grounding can be done by planting screw into the wall. If the grounding is not good, the indicator light will not work perfectly. So circuit 2 is more recommended.

The connection of the pins are as follows:
  

The indicator light circuit is similar to the test pen circuit. So that the test pen can be used to test by connecting in series, as in the following circuit 6 video.

 



EXAMPLE OF APPLICATION

In this example application, the switch is used to control a water pump outside the house. With an indicator light, it is easy to know that the water pump is working.

Because this indicator switch does not have a housing, the switch is attached to another switch housing as in the photo above.


The red indicator light appears brightly lit, when the switch is turned on, when the room light is turned off or darkened. So even from a distance, it can be easily seen that the water pump is working.


Wednesday, June 16, 2021

Cara Memasang Saklar Dengan Lampu Indikator



Saklar (switch) dengan lampu indikator  ini sangat populer dan murah harganya. Ada 6 (enam) rangkaian yang dibahas, dilengkapi video-video untuk setiap rangkaian. Rangkaian-rangkaian tersebut cukup mudah untuk dikerjakan di waktu senggang, di hari Minggu atau liburan. Dengan contoh penerapan untuk mengkontrol pompa air yang berada di luar rumah, agar mudah diketahui jika pompa bekerja. Saklar ini biasa dipakai untuk: kabel sambungan (extension cable), power suplai, cas aki (accu charger), StaVol (Stabilizer Voltage) atau Automatic Voltage Regulator (AVR), penyedot debu (vacuum cleaner), panel listrik, lampu yang jauh dari saklar atau lampu taman, pompa tekanan tinggi (high pressure pump), jaringan listrik perahu dan kapal, pendingin udara (Air Conditioner, AC), dan lain-lain.

Saklar yang dibahas adalah tipe KCD4, lampu indikatornya hanya menyala pada tegangan tinggi sekitar 90-250 volt AC atau DC. Lampu indikator adalah neon mini (NE-2) yang bisa bekerja dengan arus searah dan arus bolak-balik, jika tegangannya sesuai. Tapi saklarnya bisa bekerja pada tegangan rendah. Foto di atas memperlihatkan saklar pada posisi On atau menyambung. Tertulis pada tombol merah 1 adalah posisi On, dan 0 adalah posisi memutus atau Off.

Kapasitas arus 15 Ampere pada 250 VAC, dan 20 Ampere pada 125 VAC.

PERHATIAN:
Rangkaian-rangkaian berikut terhubung dengan jaringan listrik  220 VAC dari PLN. Selalu gunakan alat perkakas yang terisolasi dengan baik. Jangan menyentuh rangkaian saat terhubung dengan jaringan listrik. Pastikan sekring atau MCB (Miniature Circuit Breaker) terputus, saat menyambung rangkaian dengan jaringan listrik. Selalu pastikan dengan Test Pen tidak ada tegangan pada jaringan, sebelum menyambung rangkaian ke jaringan. 

Jika pada rangkaian hanya satu kabel jaringan listrik yang terhubung langsung ke saklar. Maka sebaiknya kabel tersebut adalah kabel tegangan (kabel fasa, kabel api), bukan kabel netral dari jaringan listrik. Agar memastikan tidak ada tegangan ke beban saat saklar memutus (Off).

 


Saklar ini mempunyai 4 pin atau 4 kaki, yang diberi tanda 1 dan 2, sebagaimana foto di atas. Tapi biasanya tidak digambarkan skematiknya pada bodi saklar. Jika dilihat dari bawah maka akan tampak sebagaimana gambar berikut:

Tanda 1 berada pada kedua pin di dekat pinggir saklar.

Tanda 2 terletak pada kedua pin di tengah saklar.

Ada juga tulisan nomor 3, tapi tidak ada pinnya. Ada juga saklar dengan pin yang diberi tanda 2b, 2 dan 2a; pada prinsipnya cara kerjanya adalah sama.


Skema dari saklar adalah sebagaimana berikut:

  
Lampu indikator adalah neon mini (N). Pada skema tampak seperti simbol kapasitor, tapi ada titiknya. Sebenarnya lampu ini membutuhkan sebuah resistor sekitar 150 kilo ohm, yang terhubung serie sebagai pembatas arus. Tapi resistor tersebut tidak digambarkan pada skema agar lebih sederhana. Terlihat bahwa lampu neon mini selalu terhubung ke pin-pin nomor 2.


RANGKAIAN 1 
Skema rangkaian yang paling umum adalah sebagai berikut.

 


Pin-pin nomor 1 terhubung dengan jaringan listrik (IN), digambarkan dengan warna merah. Pin-pin nomor 2 (OUT) terhubung dengan beban (L), digambarkan dengan warna biru.



Sebagaimana gambar pin di atas. Agar lampu indikator menyala saat saklar pada posisi menyambung (hidup, On), maka kedua pin 1 harus terhubung ke sumber arus atau jaringan listrik. Walaupun pin-pin nomor 2 tidak disambung, lampu indikator bisa menyala jika saklar di posisi On. Karena lampu indikator disuplai dari pin-pin nomor 1.

Pin-pin nomor 2 dihubungkan ke beban atau alat yang dikontrol. Pada skema dan gambar di atas beban digambarkan sebagai lampu (L).

Video YouTube berikut memperlihatkan cara pasang saklar KCD4 rangkaian ke satu.





RANGKAIAN 2
Jika ruangnya sempit, atau jarak yang jauh, maka hanya 3 (tiga) kabel yang bisa disambung ke saklar. Rangkaian berikut nomor pin-pin diberi huruf agar lebih mudah dimengerti, walau pada saklar aktual tidak tertulis hurufnya.
 


Pada skema di atas terlihat pin-pin nomor 1a dan 1b, semuanya terhubung ke jaringan listrik. Sedangkan pin nomor 2 hanya satu yang terhubung ke beban (L), yaitu pin 2a. Kabel lain dari beban terhubung langsung ke kabel listrik yang menuju pin nomor 1b.

Kabel jaringan yang terhubung ke pin 1a sebaiknya adalah kabel tegangan.

 
Maka sambungan pin-pin akan tampak sebagaimana gambar di atas. Terlihat jelas hanya tiga buah kabel yang terhubung langsung ke saklar.

Video YouTube berikut memperlihatkan cara pasang switch 4 kaki rangkaian ke dua.





RANGKAIAN 3
Saklar juga bisa dipasang dengan cara berbeda, sebagaimana skema berikut, sehingga didapat efek yang berbeda pula.


Gambar sambungan pin-pin sebagai berikut.

 


Jika sambungan dibalik: kedua kaki atau pin nomor 2 yang terhubung ke jaringan (input). Maka lampu indikator akan selalu menyala, pada saat saklar posisi menyambung/hidup (On), maupun saat posisi memutus/mati (Off). Karena lampu indikator terhubung langsung ke pin-pin nomor 2, tanpa melalui saklar. Pada konfigurasi ini kedua pin nomor 1 terhubung ke perangkat yang dikontrol (output). 

Rangkaian ini cocok jika tempat saklar selalu gelap. Dengan indikator yang selalu menyala akan mudah menemukan saklar.

Video YouTube berikut memperlihatkan rangkaian saklar 4 pin rangkaian ke tiga.





RANGKAIAN 4
Saklar ini juga bisa dirangkai agar indikator menyala saat tidak terhubung (Off). Jika saklar terhubung (On), maka indikator akan mati. Biasanya digunakan untuk kontrol lampu ruangan. Sebagaimana rangkaian berikut.


Jika saklar tak terhubung (Off), maka indikator akan menyala. Karena pin nomor 2a terhubung langsung ke jaringan. Dan pin 2b terhubung ke jaringan melalui beban (L). Beban tidak bisa bekerja atau menyala, karena arus yang melaluinya terlalu kecil.

Jika lampu beban rusak atau putus, maka indikator akan mati. Ini salah satu fungsi dari rangkaian ini, jika beban putus dapat langsung diketahui. Tapi jika beban korslet (hubungan pendek), indikator tetap menyala.

Jika saklar terhubung, maka pin 1a terhubung ke 2a. Sehingga lampu indikator mati karena tidak dilalui arus. Tujuannya adalah agar saklar mudah ditemukan saat ruangan gelap, karena indikator menyala saat lampu ruangan mati.

Kabel jaringan yang terhubung ke pin 2a sebaiknya adalah kabel tegangan. Dengan gambar koneksi pin-pin sebagai berikut.

 

Video YouTube berikut memperlihatkan rangkaian saklar 4 kaki rangkaian ke empat.




RANGKAIAN 5
Rangkaian ke lima ini ditambahkan lampu neon mini yang disambung paralel dengan beban.


Pada rangkaian di atas tampak lampu neon mini (N) diserie dengan resistor (R) biasanya bernilai 150 kilo ohm. Neon dan resistor tersebut  terhubung paralel dengan beban (L). Neon berfungsi sebagai indikator tambahan atau indikator ke dua.

Maka akan terjadi efek sebagai berikut:

Jika saklar memutus (Off) dan beban baik, maka: indikator saklar nyala, indikator ke dua mati.
Jika saklar memutus (Off) dan beban putus, maka: indikator saklar nyala, indikator ke dua nyala.

Jika saklar menyambung (On) dan beban baik, maka: indikator saklar mati, indikator ke dua nyala.
Jika saklar menyambung (On) dan beban putus, maka indikator saklar mati, indikator ke dua nyala.

Sehingga sirkuit ini dapat mendeteksi jika beban putus atau rusak, walau saklar belum menyambung. Tapi tidak bisa mendeteksi jika beban korslet.

Kabel jaringan yang terhubung ke pin 2a sebaiknya adalah kabel tegangan.

Penyambungan pin-pin adalah sebagai berikut:



Video YouTube berikut memperlihatkan switch 4 kaki dari rangkaian ke lima.



RANGKAIAN 6
Rangkaian ke enam ini mirip dengan rangkaian ke dua. Tapi lebih sederhana, karena kabel yang panjang hanya 2 kabel.
 

Kabel tegangan dari jaringan listrik (kabel api) harus disambung ke input saklar. Pada skema digambarkan sebagai 1a. Lampu indikator dihubungkan ke bumi, bisa menggunakan kabel pendek dari output saklar, digambarkan sebagai 2b. Output dari saklar lainnya (2a) dihubungkan ke lampu beban, lalu beban dihubungkan ke kabel masa (netral) dari jaringan listrik.

Pembumian harus diisolasi dengan baik. Guna mencegah kesetrum jika terjadi kebocoran dari kabel tegangan. Pembumian bisa dengan menanam sekrup ke dalam tembok. Jika pembumian kurang baik, membuat lampu indikator tidak bekerja sempurna. Sehingga rangkaian 2 lebih disarankan.

Penyambungan pin-pin adalah sebagai berikut:
  



Rangkaian lampu indikator mirip dengan rangkaian test pen. Sehingga test pen bisa digunakan untuk menguji dengan menghubung serie, sebagaimana pada video rangkaian ke enam berikut.

 





CONTOH PENERAPAN

Pada contoh penerapan ini, saklar digunakan untuk mengkontrol pompa air di luar rumah. Dengan lampu indikator mudah diketahui bahwa pompa air sedang bekerja.

Karena saklar indikator ini tidak ada bodinya, maka saklar dipasangkan pada bodi saklar lain seperti pada foto di atas.


Tampak lampu indikator merah menyala terang saat saklar di posisi hidup (On), saat lampu ruangan dimatikan atau digelapkan. Sehingga dari kejauhan pun, dapat dengan mudah diketahui bahwa pompa air sedang bekerja.



Sunday, May 16, 2021

Automatic Electric Clothes Iron Not Heating Up

 

This Maspion clothes iron repair procedure can be applied to other clothes irons that use the same working principles, especially dry (no steam) clothes iron made by manufacturers such as: Philips, Miyako, Panasonic, Kirin, Electrolux, Sanken, Cosmos, and others. This procedure uses a Maspion HA-110 and also Miyako EI-1009 M clothes irons. This procedure is quite easy and can be done in your spare time, on Sunday or holidays.

Before disassembling the iron, first check the cord. Because the iron is often moved, check the iron cable for twisting.  Twisted wires can cause the copper wire to break in the cable. Sometimes the twisted cable has damaged isolation, so that the cable opens.

Shown in the photo above, the heat-protective outer sheath, insulating blue rubber, and exposed copper are very dangerous. Because that open copper can be touched by human body when tidying clothes, so that the body gets electrocuted.

After using the iron, avoid winding the cord. When the cord is coiled on the iron body, the heat of the iron can damage the cord. And the coiled cord can be twisted.  The photo above is a wrong example.

We recommend that you leave the cord dangling on the ironing board. So that the cord can straighten by itself.


To repair the components in the iron, it is necessary to disassemble the back of the iron by removing 1 (one) screw.
 

In the photo above, there are 3 (three) wire connectors on the back of the iron.

The center wire is connected to the iron body, and to the ground of the home power grid. Its function is to dispose of the electric charge on the iron body, reducing the risk of electric shock if there is a current leak.

The left and right wires are connected to the home electric power grid.


Test continuity with a multimeter to check if any broken wires. To open the iron, all wires must be removed from their connectors.

On the back of the iron there are 2 (two) screws holding the iron handle.


Pull up the temperature control knob to release it. As the photo above. Under the knob, there are 2 (two) iron handle screws. Total 4 (four) screws are holding the iron handle.


Seen in the photo above. If all the screws are removed, the handle can be pulled out. Under the handle, there are 2 (two) bolts that hold the iron body.


By removing the two bolts, the iron body can be opened, as the photo above. Brush the inner of the iron to remove the accumulated dust of clothes.  

On the iron base plate (soleplate), there is a V-shaped heating element. At the center there is a bimetal circuit as an automatic temperature control.


The temperature control is sometimes dirty.  It can be cleaned by spraying WD-40, but should be wiped dry completely. Because WD-40 can burn if it is hot.

If the temperature controller is broken, it can be purchased and is widely available online (Amazon, Ebay, Alibaba, Shopee, and others). In the market it is also known as an automatic iron or iron thermostat.

The thermostat in the iron uses a bimetallic circuit, which is 2 (two) types of metal plates with different length expansion coefficients. Due to the difference in the length expansion when heated, when a certain temperature is reached, the bimetallic will warp because one plate is longer than the other.  So that cuts off the electric current to the heating element. If the temperature drops, the bimetallic will straighten again and the heating element will be connected to the mains again.

The setting on the thermostat regulates the pressure on the bimetal plate, thereby regulating the bimetal curvature at a certain temperature.

Between the iron element and the thermostat, a thermal fuse is connected in series. If the iron is too hot, this fuse will blow and will need to be replaced. This can happen when the thermostat is damaged and the iron is too hot. 


But sometimes the small bolt that secures the thermal fuse is corroded, especially the bolt in the heating element. As in the photo above.

So to replace the thermal fuse, cut the old fuse wire and connect it to the new fuse by twisting it. If necessary, solder it with a lead that has a high melting temperature. Lead that is low melt temperature will loose when the iron is hot.

The iron indicator light is a mini fluorescent lamp that is connected parallel to the iron element. This lamp has a resistor of about 120 to 200 kiloohms. This is not an LED lamp, because the LED body is made of plastic so it is not heat resistant.



The iron handle can come off the iron body, because the plastic of the base is broken. This problem can be tricked by adding a plate to the iron body bolt. In the photo above, the blue and white plate of a used tin of Pocari Sweat is tucked under the bolt.


For the Miyako EI-1009 M iron, there are 3 (three) screws to secure the plastic body.

 

The photo above is showing Miyako iron already opened. In the center of the photo, there are 2 (two) screws to secure plastic body at the back of the iron. And 1 (one) screw at the front of the iron, covered with a plastic handle that can be removed by prying with a flat head screwdriver.

The cable clamp screws must be removed to separate the plastic body. There are 2 (two) screws but not shown in the photo.

Iron base plate (soleplate) can be seen on the right of the photo, it is removed by opening 3 (three) bolts. The bolts have spacers made of plastic cylinder. The red and blue wires have to be removed from their connectors attached to the plastic body.

 

In the photo above, this Miyako iron has a heating element that is permanently attached to the iron soleplate. If the heating element is broken, it must be replaced with the iron soleplate.

Meanwhile, the thermostat, fuse and indicator light are similar to a Maspion iron. The indicator light (mini AC neon) Miyako iron has a resistor of 150 kiloohms.