Matched Content

Wednesday, November 28, 2018

Mekarnya Bunga Amaryllis Merah Hippeastrum Puniceum



Video ini terdiri dari beberapa foto saat amaryllis merah sedang mekar. Selanjutnya diikuti dengan rekaman video dari jarak dekat memperlihatkan bagian dalam dari mahkota (corolla) terdiri dari 6 helai (petal). Terlihat jelas kepala sari (antera), tangkai benang sari (filament), kepala putik (stigma), dan tangkai putik (style).


Menurut konsensus para ahli botani di tahun 1987, jenis ini bernama hippeastrum, bukan amaryllis. Dengan nama lengkap spesies hippeastrum puniceum. Tapi nama amaryllis sudah terlanjur terkenal.


Sebagaimana dapat dibaca di Wikipedia. Nama hippeastrum diberikan oleh William Herbert yang bermakna "Knight's-star-lily", mungkin bisa diartikan sebagai lily bintang ksatria. Selama bertahun-tahun ada kebingungan di kalangan para ahli botani atas nama generik amaryllis dan hippeastrum. Salah satu kesimpulannya adalah bahwa nama umum "amarilis" sebenarnya adalah genus hippeastrum, sering dijual sebagai umbi bunga dalam ruangan terutama pada Natal di belahan bumi utara. Pada November 2013 hippeastrum tercatat mempunyai 91 spesies. Biasanya yang harganya paling mahal adalah varietas double petal, bunganya berganda dalam satu kelopak sehingga mirip mawar.

Nama genus amaryllis berlaku untuk tanaman bunga dari Afrika Selatan, biasanya tumbuh di luar ruangan. Amaryllis relatif sulit beradaptasi daripada hippeastrum. Sejauh ini hanya dua spesies amaryllis yang tercatat yaitu: amaryllis belladonna dan amaryllis paradisicola

Amaryllis juga dikenal dengan nama: belladonna lily, jersey lily, naked lady, amarillo, easter lily di Australia selatan, march lily di Afrika Selatan.

Amarilis dan hippeastrum berada dalam subfamili yang sama yaitu amaryllidoideae.

Pada lingkungan tropis seperti di Jakarta, tanaman hippeastrum ini termasuk mudah untuk dipelihara, dan menyukai sinar matahari langsung agar rajin berbunga. Walaupun bisa hidup di tempat teduh, tapi akan sulit berbunga. Foto-foto bunga sedang mekar yang kemudian disatukan menjadi video, diambil mulai dari sekitar jam 7 pagi sampai jam 13 siang. Dengan selang waktu pengambilan foto setiap 10 menit.

Lihat juga mekarnya empat bunga amaryllis warna merah jambu.


Sunday, November 25, 2018

Adjustable Frequency Brake Light Simple Flasher


This simple adjustable electronic flasher circuit uses a relay controlled by a transistor, so that its frequency can be adjusted easily with a trimpot (trimmer potentiometer). See the video when the circuit is tested for frequency adjustment.


Also watch the video when the circuit is connected to the third brake light on the car, or the center brake light.


The following is a list of components that are simple and inexpensive but effective as the above schematic.

R = 5 pins relay SPDT (Single Pole Double Throw) 12 volts
D = diode 1N4007
T = transistor BC109C
Rb = 10 kiloohms trimpot
Rc = 120 kiloohms resistor
C = condenser or capacitor 33 microfarads 25 volts
B = brake light

Relay (R) is SPDT five pins. SPDT stands for Single Pole Double Throw. Two pins of the relay are used to activate the solenoid, and the other three pins as switches. See the relay switch circuit, NC (Normally Closed) pin is connected when the relay is off, this pin is connected to the bulb and supply current to charge the condenser (C).

This flasher relay will turn on the brake light if the relay is not active. The relay will be active when the condenser voltage is above 0.6 volts. If the relay is active, the current to the lamp and condenser will be disconnected, because the relay connects to the Normally Open (NO) pin. The brake light will turn off. The condenser supplies current to the base of the transistor, the transistor connects the solenoid to negative. So the relay will be active for a while, and the brake light will still off. When the condenser voltage is lower than 0.6 volts, the transistor cuts the current and the solenoid relay will off. Then the NC pin will be reconnected, the light is on and the condenser is charging again. And the cycle will continue.


As shown in the circuit photo, the 12 volts relay is an orange colored Schrack type TN313012. This relay allows direct current at a maximum of 7 amperes. So for 12 volts, the maximum load power relay, in this case the brake lamp, is about = 12 x 7 = 84 watts.

Diode (D) will short high voltage (spike), which arises when the current to the solenoid is cut off. This spike can damage the transistor. The spike arises because collapsing solenoid magnetic field induces a high voltage in the opposite direction of supply current. That is why this diode is installed backward.

The BC109C is an NPN transistor switch (T). This transistor will allow the current from the solenoid relay flow to negative when the voltage at transistor's base is above 0.6 volts. This transistor has a metal body. So if it is overheated, a cooling fin can be installed. From the test results the temperature of the transistor does not rise even though the flasher is tested for several hours.

Trimpot (Rb) with a value of 10 kiloohms will determine the length of time to discharge condenser. So it determines the length of time of activating relay and the light is off. The frequency can be changed when this trimpot is adjusted. The greater the Rb value, the longer the condenser is discharging, the longer the light off, and the lower the frequency.

The 120 kiloohm resistor (Rc) determines the length of time the condenser is charging. In other words, the duration of the relay is inactive and the light is on. The greater the value, the longer the light on. This resistor also determines the amount of current supplied to the transistor base. So it determines the amount of current supplied to the relay solenoid. If the relay current is too small, the relay is difficult to activate. From the test results it is known that Rc resistant value 330 kiloohms will make the relay difficult to activate.

Actually the Rc can also be replaced with a trimpot, so that it can be adjusted. But too many adjustments can also be troublesome. The transistor also has a maximum base current limitation, so if the Rc is replaced by the trimpot, then the risk of the maximal base current is exceeded and the transistor will be damage.

The 33 microfarad condenser (C) determines the length of time of the light to turn on, and also determines the length of time of the light off. The greater the value, the lower the frequency.

The brake light (B) is connected to the Normally Close (NC) pin of relay. If the system does not work, the brake light will remain on but not blinking. So with this design, it is still safe for the car or motorcycle that using this circuit, although it is not function properly.

The video shows an LED light as an indicator. If you want to add a 5 mm LED light, it is simple by connecting LED to the relay pin using a resistor with a value of about 2.2 kiloohms. The LED will light up quite brightly. Installation of LED can also be read on simple relay flasher articles.

12 vdc input voltage is connected to a positive wire of the brake light wiring, or a positive wire from the brake pedal switch.

This circuit can also be applied as a turn signal flasher relay. An easy way to make a printed circuit board (PCB) for this circuit can be read in the article making PCB without chemical.

Flashing brake light is a very new technology. So the regulations are still ambiguous in several places. For this reason, it takes the viewer's discretion to apply this circuit on to car or motorcycle.

The purpose of the flashing brake light is to make it more visible. Because the tail lamp (rear light) has the same red color as the brake light. Some manufacturers such as Mercedes Benz, Volvo, BMW, Honda have applied brake light that can flash on several models of car and motorbike.

Currently at the rear end the Formula One (F1) race car, there is a flashing red light. That flashing red light is activated when conditions are critical (such as: rain, fog), or when the car harvests electric power from the wheel (kinetic energy) to charge the battery in the turbo hybrid system. Charging the battery will make the car slow down and be used when entering the bend, similar to braking technique by engine brake. Furthermore, battery power will be used for acceleration, such as when exiting a bend.


Thursday, November 22, 2018

Flasher Lampu Rem Berkedip Frekuensi Disetel


Rangkaian flasher lampu rem elektronik sederhana ini menggunakan relay yang dikontrol oleh transistor agar frekuensinya bisa disetel dengan mudah dengan trimpot (trimmer potensiometer). Lihat video saat rangkaian diuji frekuensinya.


Lihat juga video saat sirkuit dipasang pada lampu rem ke tiga pada mobil, atau lampu rem tengah.



Berikut adalah daftar komponen dari rangkaian yang sederhana dan murah namun efektif sebagaimana skema di atas.

R = relay 5 kaki SPDT (Single Pole Double Throw) 12 volt
D = dioda 1N4007
T = transistor BC109C
Rb = trimpot 10 kiloohm
Rc = resistor 120 kiloohm
C = kondensor 33 mikrofarad 25 volt
B = lampu rem

SPDT Relay (R) dengan lima kaki. SPDT adalah singkatan dari Single Pole Double Throw. Dua kaki dari relay digunakan untuk mengaktifkan solenoid, dan tiga kaki lainya sebagai saklar. Kaki NC (Normally Closed) terhubung saat relay mati, kaki ini terhubung ke lampu dan menyuplai arus ke kondensor (C).

Flasher relay ini akan menyalakan lampu jika relay tidak aktif. Relay akan aktif saat tegangan kondensor di atas 0,6 volt. Jika relay aktif maka arus ke lampu dan kondensor akan terputus, karena relay menghubung ke kaki Normally Open (NO). Lampu akan mati. Kondensor akan menyuplai arus ke basis transistor, transistor menghubungkan solenoid ke negatif. Sehingga relai akan aktif beberapa saat, dan lampu tetap mati. Jika tegangan kondensor lebi rendah dari 0,6 volt, maka transistor memutus arus  dan solenoid relai akan mati. Selanjutnya kaki NC akan terhubung kembali, lampu menyala dan kondensor terisi kembali. Maka siklus akan berlanjut.


Tampak pada foto rangkaian, relai 12 volt berwarna oranye dengan merk Schrack tipe TN313012. Relai ini dapat mengalirkan arus searah sebesar maximal 7 ampere. Jadi untuk 12 volt maka daya maximal beban, dalam hal ini lampu, adalah = 12 x 7 = 84 watt.

Dioda (D) berfungsi untuk menghilangkan tegangan tinggi (spike) yang timbul saat arus ke solenoid terputus. Spike ini dapat merusak transistor. Spike timbul karena runtuhnya medan magnet di solenoid menginduksikan tegangan tinggi dengan arah arus yang kebalikan arus suplai. Itulah sebabnya dioda dipasang terbalik.

Transistor BC109C dari jenis NPN, akan mengalirkan arus dari solenoid relay ke negatif jika tegangan di kaki basis di atas 0,6 volt. Transistor ini mempunyai bodi metal, sehingga kalau kepanasan maka dapat dipasang pendingin. Dari hasil test temperatur transistor tidak naik sekalipun flasher diuji selama beberapa jam.

Trimpot (Rb) dengan nilai 10 kiloohm akan menentukan lamanya waktu pengosongan kondensor. Sehingga menentukan lamanya waktu relay aktif dan lampu mati. Maka frekwensi dapat berubah saat trimpot ini disetel. Semakin besar nilai Rb maka semakin lama pengosongan kondensor, semakin lama lampu mati, dan frekwensi semakin rendah.

Resistor (Rc) berukuran 120 kiloohm menentukan lamanya waktu pengisian kondensor. Dengan kata lain menentukan lamanya relay tidak aktif dan lampu menyala. Semakin besar nilainya maka makin lama lampu menyala. Resistor ini juga menentukan besar arus yang disuplai ke basis transistor. Sehingga menentukan juga besar arus yang disuplai ke solenoid relay. Jika arus relay terlalu kecil maka relay sulit untuk diaktifkan. Dari hasil test diketahui bahwa Rc senilai 330 kiloohm akan membuat relay sulit untuk diaktifkan.

Sebenarnya Rc juga dapat diganti trimpot agar dapat disetel. Tapi terlalu banyak setelan juga dapat merepotkan. Transistor juga memiliki batasan arus basis maximal, sehingga jika Rc diganti trimpot maka beresiko arus maximal basis terlampaui dan transistor rusak.

Kondensor (C) senilai 33 mikrofarad menentukan lamanya lampu menyala, sekaligus juga menentukan lamanya lampu mati. Semakin besar nilainya maka frekwensi akan semakin rendah.

Lampu rem (B) tersambung pada kaki Normally Close (NC) dari relay. Jika sistem tidak bekerja, maka lampu rem akan tetap menyala tapi tidak berkedip. Jadi dengan desain ini, masih aman untuk mobil atau motor yang menggunakan sirkuit ini, meskipun flasher ini tidak berfungsi dengan baik.

Pada video tampak adanya lampu LED sebagai indikator. Jika ingin menambah lampu LED 5 mm tersebut maka cukup disambung pada kaki relay dengan menggunakan resistor dengan nilai sekitar 2,2 kiloohm sudah cukup terang sinarnya. Pemasangan LED dapat dibaca juga pada artikel flasher relay sederhana.

Input tegangan 12 vdc disambung ke kabel positif dari lampu rem, atau kabel positif dari switch pedal rem.

Rangkaian ini juga dapat diaplikasikan sebagai flasher lampu sein (lampu belok). Cara mudah membuat Printed Circuit Board (PCB) dari rangkaian ini dapat dibaca pada artikel membuat PCB tanpa kimia.

Lampu rem berkedip adalah teknologi yang masih sangat baru. Sehingga peraturannya masih rancu di beberapa tempat. Untuk itu dibutuhkan kebijaksanaan pemirsa dalam menerapkan rangkaian ini pada mobil ataupun sepeda motor.

Tujuan lampu rem berkedip agar lebih terlihat. Karena lampu malam (lampu belakang) juga berwarna merah yang sama dengan lampu rem. Beberapa pabrikan seperti Mercedes Benz, Volvo, BMW, Honda sudah menerapkan lampu rem yang dapat berkedip pada beberapa model mobil dan sepeda motor.

Saat ini di belakang mobil balap formula satu (F1) dilengkapi lampu merah berkedip yang diaktifkan ketika kondisi agak berbahaya (seperti: hujan, kabut), atau ketika mobil memanen daya listrik dari putaran roda (energi kinetik) untuk mengisi baterai pada sistem turbo hybrid. Pengisian baterai akan membuat mobil melambat dan digunakan seperti saat memasuki tikungan, mirip teknik rem dengan engine brake. Selanjutnya tenaga baterai akan digunakan untuk akselerasi, seperti saat keluar dari tikungan.

Wednesday, November 7, 2018

Depok Antasari (Desari) Toll Section Brigif Cilandak



The following video when driving from Brigif to Cilandak, then to Antasari road towards Blok M. The vehicle speed in the video is faster about 1.5 times of the actual speed. From Brigif direction, the operational gate is only Cilandak gate. Later there will be a gate towards Pondok Labu or Andara.



The Depok Antasari toll road (Desari) is already operational since it was inaugurated by President Joko Widodo on Thursday September 27, 2018, for section IA, the Antasari-Brigif section with a length of 5.8 km at toll gate Cilandak Utama, South Jakarta. The project Depok-Antasari toll road with a total of 21.6 kilometers is planned to be connected with the Bogor Ring Road toll road to Ciawi, with the addition of 6.5 kilometers of Bojonggede-Salabenda. So that it is expected to reduce the density on the Jagorawi toll road (Jakarta Bogor Ciawi).

The following video is showing a test drive from Antasari road and enter via Cilandak toll gate, then exit at Brigif. When the video was recorded, this toll road only reached Brigif. From the direction of Cilandak, the exit to Pondok Labu, Andara and Ciganjur is already operating. This exit is close to Green Andara Residence real estate.





KMToll GatesAdjacent ToDestination
0Antasari InterchangePangeran Antasari roadCipete, Blok M (north)
Jakarta Outer Ring RoadFatmawati, Pondok Indah, Jakarta-Serpong (west) toll
TB Simatupang roadMampang Prapatan, Pasar Minggu, Jagorawi (east) toll
1Cilandak UtamaMain toll gate Desari
3AndaraAndara roadAndara, Pondok Labu, Ciganjur
5BrigifBrigif roadCiganjur, Gandul, Cinere
8Krukut InterchangeCinere-Jagorawi tollCinere, Pamulang, Serpong-Cinere (west) toll
Kukusan, Margonda, Cisalak, Cimanggis-Cibitung (east) toll
13SawanganSawangan roadSawangan, Mampang, Parung
21BojonggedeTegar Beriman II roadBojonggede, Tajur Halang, Cibinong




Friday, November 2, 2018

Tol Depok Antasari (Desari) seksi Brigif Cilandak


Video berikut berkendara dari jalan Antasari menuju gerbang Cilandak, selanjutnya keluar di Brigif. Pada saat video direkam jalan tol ini hanya sampai Brigif. Dari arah Cilandak, pintu keluar ke arah Pondok Labu, Andara, dan Ciganjur sudah beroperasi. Pintu ini dekat dengan yang dekat dengan perumahan Green Andara Residence.


Jalan tol Depok Antasari (Desari) sudah dapat digunakan sejak diresmikan oleh Presiden Joko Widodo di hari Kamis 27 September 2018, untuk seksi IA, ruas Antasari-Brigif sepanjang 5,8 km di gerbang tol Cilandak Utama, Jakarta Selatan. Proyek jalan tol Depok-Antasari sepanjang total 21,6 kilometer direncanakan akan terhubung dengan tol Bogor Ring Road sampai Ciawi, dengan penambahan Bojonggede-Salabenda sepanjang 6,5 kilometer. Sehingga diharapkan akan mengurangi kepadatan di jalan tol Jagorawi (Jakarta Bogor Ciawi).

Baca juga Jakarta - Bogor via kereta rel listrik (KRL).

Video berikut saat berkendara dari Brigif menuju Cilandak, selanjutnya ke jalan Antasari ke arah Blok M. Kecepatan kendaraan pada video lebih cepat sekitar 1,5 kali kecepatan sebenarnya. Dari arah Brigif sementara ini hanya gerbang Cilandak yang aktif. Nantinya akan ada gerbang Pondok Labu atau Andara .



KM Gerbang Tol Berbatasan dengan Menuju
0 Antasari Interchange Jalan Pangeran Antasari Cipete, Blok M (utara)
Jalan Tol Lingkar Luar Jakarta Fatmawati, Pondok Indah, Jalan Tol Jakarta-Serpong (barat)
Jalan TB Simatupang Mampang Prapatan, Pasar Minggu, Jalan Tol Jagorawi (timur)
1 Cilandak Utama Gerbang tol utama Jalan Tol Desari
3 Andara Jalan Andara Andara, Pondok Labu, Ciganjur
5 Brigif Jalan Brigif Ciganjur, Gandul, Cinere
8 Krukut Interchange Jalan Tol Cinere-Jagorawi Cinere, Pamulang, Jalan Tol Serpong-Cinere (barat)
Kukusan, Margonda, Cisalak, Jalan Tol Cimanggis-Cibitung (timur)
13 Sawangan Jalan Raya Sawangan Sawangan, Mampang, Parung
21 Bojonggede Jalan Raya Tegar Beriman II Bojonggede, Tajur Halang, Cibinong


Thursday, November 1, 2018

Brake Light & Turn Signal Electronic Flasher


Flashing brake light is now popular. The purpose of the flashing brake light is to make it more visible. Because the tail lamp (rear light) has the same red color as the brake light. Some manufacturers such as Mercedes Benz, Volvo, BMW, Honda have applied brake light that can flash on several models of car and motorbike.

Currently at the rear end the Formula One (F1) race car, there is a flashing red light. That flashing red light is activated when conditions are critical (such as: rain, fog), or when the car harvests electric power from the wheel (kinetic energy) to charge the battery in the turbo hybrid system. Charging the battery will make the car slow down and be used when entering the bend, similar to braking technique by engine brake. Furthermore, battery power will be used for acceleration, such as when exiting a bend.

Read also simple adjustable twinkle light 2,200 watts.

The following simple and inexpensive electronic flasher circuit can be used to make flashing brake light. It can be applied to LED light or incandescent bulb.


R = relay 5 pins SPDT (Single Pole Double Throw) 12 volts
Dz = 12 volts zener diode 1 watt
C = condenser 470 microfarads 25 volts
R1 = 120 ohms 1 watt resistor
D = diode 1N4007
LED diameter of 5 mm
R2 = 1 kilo ohm 0.25 watts resistor
B = brake light


The following photo shows the composition of the components attached to the matrix board.



The following video on YouTube shows when the circuit prototype is being tested.



R is a relay SPDT with five pins. SPDT stands for Single Pole Double Throw. Two pins of the relay are used to activate the solenoid, and three other pins as a switch. NC (Normally Closed) pins are connected when the relay is off, this pin is connected to the lamp and supplies current to the condenser (C). Flasher relay will turn on the light if the relay is not active. The relay will be active when the condenser is almost full. If the relay is active, the current to the lamp and condenser will be disconnected, because the relay connects to the Normally Open (NO) pin. The lamp will turn off. The condenser will supply the current to the relay solenoid, so the relay stays active for a while, and the lamp stays off. If the condenser voltage is low, the relay solenoid will off. Then the NC pin will be connected again, the light is on and the condenser is recharged. Then the cycle will continue.

Seen in the circuit photo, 12 volt relay has orange color with Schrack brand type TN313012. This relay can transmit direct current for a maximum of 7 amperes. So for 12 volts the maximum power load, in this case the lamp, is = 12 x 7 = 84 watts.

Condenser (C) determines the blinking frequency. With a value of 470 microfarads will make a blink with a frequency of about 5 hertzs, or 5 blinks per second, suitable for flashing brake light. The frequency will also depend on the relay which is used.

With a value of 1,500 microfarads, flashing frequency is about 1.5 hertzs, suitable for turn signal (turn light). Because this flasher works with a solenoid (electromagnet), this flasher requires a negative wire. While the original flasher in a vehicle usually does not need a negative wire (ground), because it works based on heat due to the electric current that goes to the lamp. The original flasher is made of a bimetal that will disconnect the current when it is hot, and reconnect immediately after it's cooler. The turn signal lamp has a typical tick-tock sound due to the movement of the bimetal plate.


The zener diode (Dz) stabilizes the voltage at 12 volts. Because the voltage on a vehicle is usually unstable, and causes flashing frequency change. Zener and condenser also eliminate high voltage (spikes) that is produced in relay's solenoid when the relay is turned off. The spike voltage can damage the transistor and IC. Zener or condenser must always be installed when the relay is activated using an adapter with a transistor or IC voltage stabilizer. Pay attention to the above schematic and picture, zener is installed in reverse position. The cathode pin is connected to positive and the anode pin is connected to negative or ground. The current will flow from the cathode (K) to the anode (A) if the zener voltage is exceeded. This is why the zener to be used as a voltage stabilizer.

Resistor 1 (R1) connects the condenser (C) to negative (ground) when condenser is charging. The bigger resistant, the longer charging time for condenser, and the longer the lamp lights up. Conversely, if R1 is reduced, the length of time that the lamp lights up will be shorter. The current that passes through R1 also flows through the relay and activates the relay. If the R1 is too big then the relay will not be activated, because the current is too weak. Even though the condenser is full. From the test result, the biggest value of R1 is around 180 ohms, with this value the relay has begun to be difficult to activate.

The diode (D) prevents the current from the condenser to flow into the bulb (B) when the relay is activated. The current from the condenser can only go to the relay solenoid, in order to control relay activation.

LED light with a diameter of 5 mm is just an indicator, can be ignored. LED colors may be chosen according to your design.

Resistor LED (R2) to limit the current so that the LED will not damage. This resistor can be ignored if the LED is not installed. If the resistant is reduced then the LED will be brighter. For a diameter of 5 mm, usually the LED current must not exceed 20 milliamperes.

Lamp (B) is the vehicle's original brake light. Can be an incandescent lamp (bulb), or LED (Light Emitting Diode) light.

In my opinion, the flashing brake light should not be used on the brake light that are adjacent to the turn signal. Because it can be ambiguous when viewed at a glance by other drivers at high speed. The best position for the flashing brake light is on the third (3rd) brake light, or the brake light in the center at the back of the car. Some motorbikes have turn signal light with stem and separated from the brake light, so it can prevent confusion if the brake light is blinking.

Hopefully the reader applies this circuit wisely.